SOLD A total system for stereolithography CREATION SISSIEV

Improve your production efficiency.

Introducing the SCS, a total system

Shortening product development spans, producing smaller lots, reducing production costs... Improving production efficiency has become an important theme for all kinds of modern businesses. Stereolithography, capable of 3-dimensional modeling with higher speed and greater precision, is essential technology for improving business competitiveness.

The Solid Creation System (SCS) is a total modeling system,

with hardware from Global SONY, UV-curable resin from the synthetic resin authority JSR, and technical support provided by D-MEC.

Integrating versatile, high-level know-how

Outsourcing of modeling

Delivery and installation work

Equipment consulting

A broad hardware line-up for high-speed and high-precision specifications

The Solid Creator uses SONY's own galvanometer mirror control system and allows creation of high-precision solid lines. From general-purpose machines to high-speed and high-precision machines, we have a broad lineup of models from which the optimal model for each use and purpose can be selected.

> A wealth of laser technology, from our base of

optical-recording technology

User support

Total support using our vast stereolithography experience

D-MEC, a group of engineers working on the cutting edge of this field, provides total technical support for the introduction of The Solid Creation System. We provide the finest assistance, from the selection of optimal equipment and resins when installing the system, to service after installation.

> Resin development and sales

A group of

professionals of

stereolithography

Equipment

development

and sales

SCS as the Total stereolithography Svstem

Maintenance

A synthetic resin manufacturer with a long history of success

DeSolite: SCR series UV-curable resins in a wide range of grades

DeSolite, JSR's own UV-curable resin, has small shrinkage rates and superior dimensional stability. It has excellent mechanical characteristics after hardening, including hardness, rigidity, toughness, and temperature characteristics. In addition, it is available in a wide range of grades which have properties similar to rubber, ABS, polypropylene, polyethylene, and other materials.

What is stereolithography?

Stereolithography involves converting a 3-D CAD design image into cross-section "slice" data, then using a laser to harden a UV-curable resin one slice at a time. Each slice is extremely thin, at approximately $100\mu m$, allowing a very delicate 3-D solid to be created from the built-up resin slices.

for stereolithography.

Meeting ever-more-demanding user needs

World's First Modeler Capable of Quantity Output Cutting-Edge Modeler Offering Ease of Use with Added Modeling Function

The world's first high-speed modeling machine for quantity production with advanced features including: improved modeling speed, enlarged modeling area, real-time data processing, improved radiation effect, self-propelled tank for easy resin changes, added dual-beam function, and automatic palette changer (optional).

Quantity-output high-speed modeling type

Solution 🖌

Succeeding in high-precision, ultrafine modeling at the top level of the industry

The SCS-1000HD uses a combination of a He-Cd laser, with a tighter beam focus, and a special UV-curable resin for high-precision, ultrafine modeling that meets the industries highest standards.

High-precision, ultrafine modeling type

The numerous advantages of the Se make for an even broader range of

Merit

With SCS, anyone can easily create 3-dimensional models for checking shape and function. As a result, SCS provides the following advantages.

Advantages for design and development

- Texture and shape can be verified by actually viewing the model.
- Grip feeling and other human-engineering aspects can be experienced with the actual object.
- Design verification can be done easily at the concept stage or when specifications are changed.
- Functional evaluations and tests can be shortened and streamlined.

Advantages for production technology

- Assembly workability, and in particular any interference in the work track, can be checked in advance.
- Jigs used in assembly can be reviewed in advance.
- Workability after deformation under load can be checked.
- The prototype process for molds becomes unnecessary, allowing the production phase to be reached quickly.

Advantages for sales

- Customers can be provided with models as prototype samples.
- Communication with customers can be made smoother and negotiations more advantageous.
- Consideration of product price can be made easier.

Advantages for management

- Molds for production can be made without going through the prototype process, reducing the time and costs required for development.
- Proposals for multiple shapes can be compared and reviewed in a short time, speeding the decision-making process.
- Smooth interaction between departments is facilitated.
- Prototypes which used to be assigned to professionals can now be easily created by anyone, contributing to business streamlining.

Various

Design models

Original model, SANYO Electric Co., Ltd.

High-precision n

Sales samples

CS applications.

Users

Created by artist Yukihiro Yoshihara

nodels

Working models

Provided by Nakakin Co., Ltd.

Casting

High-precision models

All kinds of master models

Pulp molds

Vacuum forming

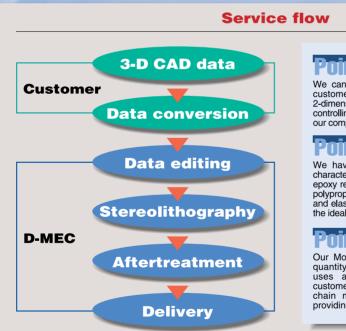
f other uses

Medical models

Direct molds (injection-molded simple molds)

"With my current stereolithography equipment, I have trouble meeting delivery deadlines when the operating rate is high."

"I would like to be able to rapidly create models, but I do not have the volume of work to justify purchasing stereolithography equipment.


"Purchase of stereolithography equipment is still a long ways off, but I would like to try it and see how it works,"

D-MEC Modeling will deliver the commissioned 3-dimensional model, created with SCS and based on the 3-D CAD data or drawings provided by the customer.

Service contents

- Use of stereolithography to create 3-dimensional models.
- Production of vacuum-injection molds from a master stereolithography-model.
- Production of direct molds (injection molded simple molds) and injection-molded products.
- Creation of 3-D CAD data from design drawings.

Point

We can provide an immediate estimate once a customer provides us with STL data or 2-dimensional drawings. We take responsibility for controlling all data we receive, and no data leaves our company

'OINT 2

We have a wide variety of resins with special characteristics, including high-precision general-use epoxy resins, heat-resistant resins, ABS-like resins, polypropylene-like resins, polyethylene-like resins, and elastomer-like resins. A model is created using the ideal resin for the customer's needs

20INT 5

Our Modeling Center is equipped with a large quantity of stereolithography equipment, and uses a system for responding quickly to customer orders. We are also linked to over 20 chain member businesses across Japan for providing the finest service.

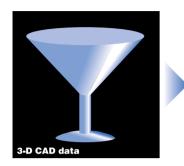
For inquiries regarding D-MEC Modeling, please contact us at the offices below.

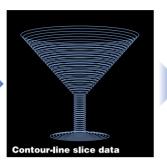
Model creation orders, requests for estimates, other inquiries

D-MEC Head Office Sales Dept. TEL.81-3-5565-6661 FAX.81-3-5565-6642 URL:http://www.d-mec.co.jp e-mail:tokyo@d-mec.co.jp

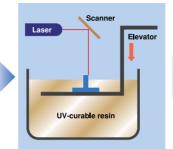
Technical questions, inquiries regarding consultations

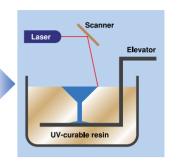
D-MEC Modeling Center Model Commission Dept.


TEL.81-29-854-9281 FAX.81-29-854-9285 e-mail:tsukuba@d-mec.co.jp

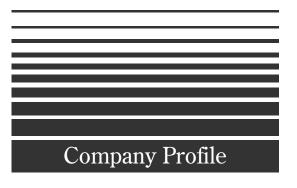


The principle of stereolithography


Stereolithography involves converting a 3-D CAD design image into cross-section "slice" data, and then using the data to guide a laser which strikes a UV-curable resin and hardens it. The model is build up one slice at a time.


①A 3-dimensional model, designed with CAD, is sliced into a number of thin cross sections and converted to contour-line data.

⁽²⁾Following the contour-line data, an ultraviolet laser scans across the surface of a UV-curable resin in the tank to draw the crosssection shape. The resin which is struck with the laser hardens, forming one cross-section layer of the shape, resting on the elevator.



③The elevator descends by one layer at a time. By continuous creation of numerous thin cross sections, the 3-dimensional model is formed.

④By repeating this process, the 3-dimensional model is completed. Finally, the elevator is raised and the model removed for aftertreatment.

Our company has combined 3-dimensional CAD, lasers, and UV-curable resin to create a cutting-edge stereolithography system, the Solid Creation System (SCS). We perform the business operations below related to this system.

- This system was developed jointly by SONY, JSR, and D-MEC.
- (1) Sales and maintenance of the Solid Creation System (stereolithography equipment)
- (2) Commissioned production of 3-dimensional models (D-MEC modeling), design and manufacture of direct molds and pulp molds
- (3) Sales of UV-curable resin (DeSolite)

Fields of application: Automotive field, OA, home appliances, precision machinery, master models, resin molds, medical field, containers, others

Company name:	D-MEC Ltd.
Established:	February 28, 1990
Head office:	HAMARIKYU Parkside Place
	5-6-10 Tsukiji, Chuo-ku, Tokyo , 104-0045 Japan
	TEL 81-3-5565-6661 FAX 81-3-5565-6642
Modeling Center:	JSR Tsukuba laboratory, 25 Miyukigaoka,
	Tsukuba-shi, Ibaraki, 305-0841 Japan
	TEL 81-29-854-9281 FAX 81-29-854-9285
Representative:	Katsutoshi Igarashi, president
Capital:	65,000,000 yen (100% owned by the JSR Corporation)

High-power high-speed light molding device SCS-8100

Because of correspondence to mass production first in the world, production efficiency will be improved more.

BONT

- Molding speed is increased up to 2 times (our company comparison)
- Increased molding area (610 x 610 x 500 mm)
- Non-stop operation realized because of real-time data processing
- Easy update of version to DualBeam
- Irradiation efficiency is increased by 20% because of a new optical system
- Renewed user interface for Solid-Engine, improved operationality, and reduced editing time
- Easy replacement of resins because of adoption of new-developed self-running tank
- Continuous unmanned operation because of auto-pallet changer (option)

Main specifications of "SCS-8100"

Laser	Semiconductor-energized solid laser (1,000mW@60kHz)
Modulator	Laser built-in
Deflection device	Galvano-mirror type(With defocus distortion calibration by sweeping)
Molding possible range	610×610×500mm
Spot size [*]	0.15 to 0.40mm (auto change)
Maximum scanning speed *	10m/sec
Lamination thickness*	0.10~0.20mm
Tank capacity	280 liter (replaceable: self-running)
Power supply for body	100VAC40A
Laser cooling device	Built-in
Dimension of body	$1,940 \times 1,150 \times 1,990$ mm (excluding projection and pato-light)
Weight of body	1,700Kg

%Spot size, maximum scanning speed, and lamination thickness depend on the range to be used.

Maker: Sony Manufacturing Systems Ltd.

New Solid Creation System SCS_SO

Main characteristics

- Advanced solid-state laser lowers running costs
- Leading-edge laser optics technologies improve maintenance and energy efficiency
- Selectable parameters allow choices from highspeed and high-precision modes
- Real-time data processing eliminates waiting by transitioning immediately from data-processing to modeling
- Solid-Engine modeling software realise easy operation

Specifications

Laser	Solid-state semiconductor laser (200 mW, 25 kHz)
Modulator	Include in laser
Deflection equipment	Galvanometer mirror system (includes sweep-defocus correction function)
Model creation range	300 x 300 x 250 mm (11.8 x11.8 x 9.8 in.)
Spot size*	0.075 ~ 0.4 mm (0.003 ~ 0.0157 in.) (automatic adjustment)
Max. scan speed*	7.5 m/sec (295.2 in./sec)
Layer thickness*	0.05 - 0.2 mm (0.002 ~ 0.008 in.)
Tank volume	55 L (replaceable)
Power source	100 VAC 30 A
Laser coolant	Not needed
Main unit dimensions (excluding signal tower and projections)	1,425(W) x 1,115(D) x 1,610(H) mm (56.1(W) x 43.9(D) x 63.4(H) in.)
Main unit weight (excluding resin)	650 kg (1,435 lbs)

*The spot size, maximum scan speed, and layer thickness vary according on the resin used.

Made by Sony Manufacturing Systems Corporation

Solid Creator specifications

/	SCS-1000HD	SCS-6000	SCS-8100	SCS-8100D	SCS-9000
/	High-precision, ultrafine modeling machine	Small-size modeling machine	Large-size modeling machine	Large-size modeling machine	Large-size modeling machine
Laser	He-Cd laser	Solid-state semiconductor laser	Solid-state semiconductor laser	Solid-state semiconductor laser	Solid-state semiconductor laser
		200mW, 25kHz	1000mW, 60kHz	1000mW, 60kHz × 2	800mW,60kHz (first in Japan)
Modulator	AOM (acousto-op	-optic element)	Built-in	t-in	AOM (acousto-optic element)
Deflection equipment		Ö	Galvanometer mirror system	E	
		(Inclue	(Includes sweep-defocus correction function)	ction)	
Model creation range	300 × 300 × 270mm	300 × 300 × 250mm	610 × 610 × 500mm	610 × 610 × 500mm	1,000 × 800 × 500mm
Spot size	0.05 - 0.3 mm (automatic adjustment) 0.07	0.075 - 0.4 mm (automatic adjustment)	0.15 - 0.4 mm (automatic adjustment)	0.15 - 0.4 mm (automatic adjustment)	0.2 - 0.4 mm (automatic adjustment)
Scan speed	Max. 2 m/s	Max. 7.5 m/s	Max. 10 m/s	Max. 10 m/s	Max. 20 m/s
Layer thickness	$0.02 \sim 0.15$ mm	$0.05 \sim 0.2$ mm	$0.1 \sim 0.2$ mm	0.1 ~ 0.2mm	$0.1 \sim 0.4$ mm
Tank volume	45 L (exchangeable)	55 L (exchangeable)	280 L (replaceable; wheeled)	280 L (replaceable; wheeled)	840L
Power source	100V20A	100V30A	100VAC40A	100VAC45A	100V35A
Coolant	Not needed	Not needed	Not needed	Not needed	Not needed
Main unit dimensions $(W \times D \times H)$ (mm)	1,425 × 1,100 × 1,590	1,425 × 1,115 × 1,610	$1,940 \times 1,150 \times 1,990$ (excluding signal tower and projections)	$1,940 \times 1,150 \times 1,990$ (excluding signal tower and projections)	2,340 × 1,640 × 2,760
Main unit weight (including resin)	710kg	710kg	1,700kg	1,750kg	2,920kg
				Made by Sony Man	Made by Sony Manufacturing Systems Corporatio

ŝ ב ווומטה עט סטואו

0

Ŷ

٦

SCS-9000

SCS-8100D

SCS-8100

Table of resin properties

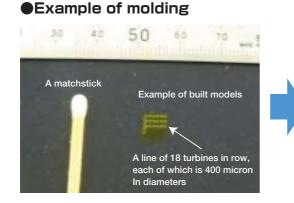
1.General							
1) Grade		SCR701	SCR710	SCF	3735	SCR740	SCR11120
2) Material type		Ероху	Ероху	Ep	оху	Ероху	Ероху
3) Equipment model		SCS-2000, others	SCS-2000, others	SCS-800	0, others	SCS-8000, others	SCS-8000, others
4) Laser		Ar/solid-state	Ar/solid-state	Solid	-state	Solid-state	Solid-state
5) Characteristics		General use, moisture resistant	High toughness	High heat resistan	ce, high toughness	Ultra-high heat resistance	Crystal clear
6) Post-cure		Not needed	Not needed	Not needed	I /or heating	Heating	Not needed
2.Liquid resin properties							
1) Threshold exposure: Ec m	J/cm ²	33	13	2	3	16	12
2) Penetration depth: Dp	μm	191	135	1	60	120	160
3) Viscosity (25°C)	Pa•s	0.34	0.5	0.	47	0.43	0.26(30°C)
4) Density(25°C) g	/cm ²	1.13	1.19	1.	13	1.13	1.12
3.Physical properties of hardened substance (after post-cure for types that require it.)							
1) Tensile strength	MPa	75	66	non-postcure 45	postcure 67	62	47
2) Young's modulus	MPa	3300	2700	2510	2720	3000	2650
3) Elongation at break	%	6	10	6.8	6.0	3	20
4) Flexural strength	MPa	104	85	83	97	110	63
5) Flexural modulus	MPa	3100	2500	2530	2570	2800	2040
6) Izod impact strength	J/m	25~27	32~38	29~33	34~39	29	30
7) Hardness (durometer D)		87	81				81
8) Self-tapping property		×	O	O	0		O
9) HDT (heavy load) *Glass transition temp. (Measurement method)		HDT=53°C Tg=82°C (DMA)	HDT=49°C Tg=78°C (DMA)	HDT=48℃ Tg=90℃	HDT=85℃ Tg=110℃	HDT=100℃ Tg=135℃	HDT=46℃ Tg=43℃
4.Other							
1) Safety Ha	azard	Non-hazardous substance Deleterious substance	Non-hazardous substance Deleterious substance		us substance s substance	Non-hazardous substance Deleterious substance	(Class 3, No. 4 mineral) Deleterious substance
2) Remarks							

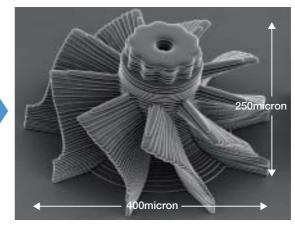
This information contained herein is given in good faith but without any guarantee or warranty and may involve proprietary rights of third parties. Our advice given in this information does not release you from the obligation to check its validity and to test our products as to their suitability for the intended process and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely on your own responsibility. Our products are sold in accordance with Product Specification separately issued by us.

Table of resin properties

1.General						
1) Grade		SCR751	SCR950	SCR9100	SCR9120	SCR802
2) Material type		Ероху	Oxycetane	Ероху	Ероху	Ероху
3) Equipment model		SCS-1000HD	SCS-1000HD	SCS-8000, others	SCS-8000, others	SCS-2000, others
4) Laser		He-Cd	He-Cd	Solid-state	Solid-state	Ar/solid-state
5) Characteristics		General use, moisture resistant	High sensitivity, high toughness	Ultra-high toughness	Ultra-high toughness	For direct mold
6) Post-cure		Not needed	Not needed	Not needed	Not needed	Heating
2.Liquid resin properties						
1) Threshold exposure: Ec m	J/cm ²	20	5	6.8	10.9	9
2) Penetration depth: Dp	μm	139	79	130	140	152
3) Viscosity (25°C)	Pa•s	0.36	0.59	0.56 (30°C)	0.45 (30℃)	4.8
4) Density(25°C) g	/cm ²	1.13	1.10	1.11	1.13	1.59
3.Physical properties of hardened substance (after post-cure for types that require it.)						
1) Tensile strength	MPa	80	51	28~32	30~32	85
2) Young's modulus	MPa	3400	2000	1100~1400	1200~1500	9200
3) Elongation at break	%	5	8	14~17	15~25	2
4) Flexural strength	MPa	115	75	42~62	41~46	120
5) Flexural modulus	MPa	3300	2600	1200~1500	1300~1500	8900
6) Izod impact strength	J/m			32~43	48~53	
7) Hardness (durometer D)		88	85			92
8) Self-tapping property			O	O	O	
9) HDT (heavy load) *Glass transition temp. (Measurement method)		HDT=56℃ Tg=108℃ (DMA)	HDT=64°C Tg=121°C (DMA)	HDT=60∼65℃ —	HDT=52~61°C —	HDT=~250°C Tg=133°C (DMA)
4.Other						
1) Safety Ha	azard	Non-hazardous substance Deleterious substance	(Class 3, No. 4 mineral) Deleterious substance	(Class 3, No. 4 mineral) Deleterious substance	(Class 3, No. 4 mineral) Deleterious substance	Non-hazardous substance Deleterious substance
2) Remarks						

This information contained herein is given in good faith but without any guarantee or warranty and may involve proprietary rights of third parties. Our advice given in this information does not release you from the obligation to check its validity and to test our products as to their suitability for the intended process and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely on your own responsibility. Our products are sold in accordance with Product Specification separately issued by us.


Newly appeared Micro stereo-lithography system


ACCULAS

Completely new micro processing system has just completed.

ACCULAS is simple to operate and can made structure automatically in short time. 3D micro structures can be built with the resolution level of 1 micron. It is useful for trial production, development and manufacture of micro devices.

Here is an SEM image of one turbine. The total time required to build 18 turbines is one hour.

Keihan Bus Jujo Bldg., 5 Minami-Ishida-cho, Higashi-Kujo, Minami-ku, Kyoto 601-8033 TEL (075) 693-4666 FAX (075) 693-4677 URL http://www.laser-solutions.co.jp Sales sole agency:

Hamarikyu Park Side Place, Tsukiji 5-6-10, Chuou-ku, Tokyo 104-0045 TEL (03) 5565-6661 FAX (03) 5565-6642 URL http://www.d-mec.co.jp E-mail acculas@d-mec.co.jp

ACCULAS superiority compared with other micro processing technologies

- With three-dimensional CAD data, any three-dimensional microstructure can be produced in a singular attempt (there is no need for multi-stage processing)
- It does not require the massive monetary investment in equipment that LIGA and semiconductor processes
- Simple to operate and automated production
- Processing completed in short time (several minutes to a few hours)
- Production of high-aspect-ratio and thick-film microstructures possible
- Large reduction in development time
- Reduction of MEMS production costs made possible

Examples of using ACCULAS

- For MEMS research, to test applications during test stage
- For applying sacrificial layer for semiconductor process
- For making master production device for electroform coating, etc.
- As a device for injection molding, emboss processing
- As a device for producing the final product

•System specifications

Light source	LD (405 nm)
Image modulation	Digital mirror device
Exposure resolution	lμm ^(*1)
Molding range	$150 \times 150 \times 50$ mm
Maximum model size	50 mm square ^(#2)
Lamination layer pitch	5μ m $\sim 10\mu$ m (Machine accuracy: 2μ m)
Resin	Special high-resolution resin
Data interface	Dedicated I/F software "Viola" (plugged in Magics) $^{\scriptscriptstyle{(*3)}}$
Power supply	100VAC, 2KVA
Outside dimensions (body)	1,000(W)×1,000(D)×1,700(H)mm (excluding Control PC)
Weight (body)	Approx. 600kg

%1 It is the optical resolution, which may not correspond to the resolution of the molded object depending on shapes of models.

%2 Sizes of models depend on capacity of physical memory of the PC.

*3 New direct interface has been developed.

Magics is Matelialise's editing software

DeSolite SCR-950

Tough, high-precision resin for stereolithography

The JSR Corporation has developed SCR950, a new UV-curable resin for use with the SCS-1000HD (He-Cd laser) high-precision stereolithography equipment. SCR950 uses oxycetane, a new chemical species, for improved performance over the conventional epoxy resin SCR751.

Characteristics of SCR950 (compared with SCR751)

- (1) Very tough: 600% improvement in snap-fitting properties, 500% improvement in folding endurance.
- (2) Very sensitive: Laser scan speed can be increased 200%
- (3) High resolution: Shapes with sharper edges can be obtained.

Enlarged photo of connector model

Properties of SCR950

SCR950

Oxycetane

590

5 79

168 18

42

18

SCR751

Epoxy

360

20

139

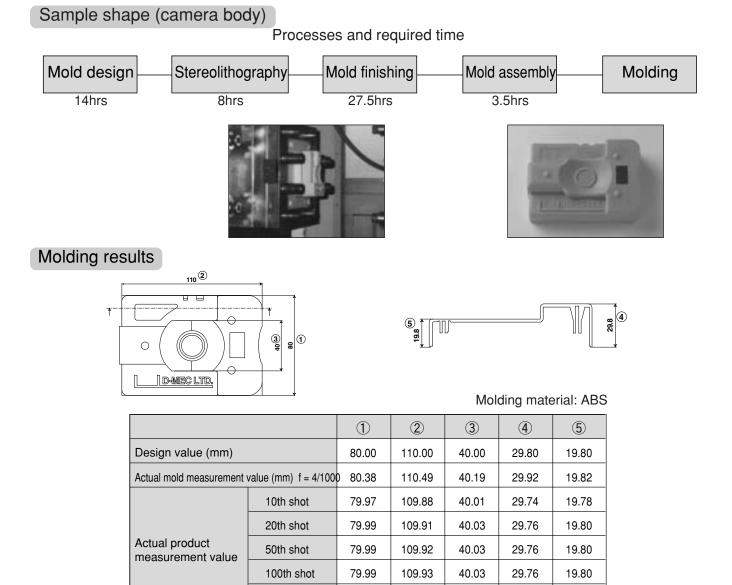
210

14

8

3

Contraction of the local distance of the loc	
THURSDAY AND A DECIMAL OF A DEC	
SCR950	Fluid properties
	Viscosity (cps at 25°C)
	Hardening properties
Sector Se	Ec (mJ/cm ²)
	Dp (μm)
	Hardened film properties
	Young's modulus (kg/mm ²)
SCR751	Elongation at break (%)
	Folding endurance (times)
	Snap-fitting properties (times)


Example of injection molding with direct molds

What is a direct mold?

- An injection-molding mold modeled directly from 3-D CAD data using the SCS (Solid Creation System)
- The greatest advantage is the ability to produce in a short time a shape in the same material as the product.

Fields of application

- •Improving prototype efficiency •Checking the design of production molds
- •Small-lot production •Beginning production start-up

This direct mold was used for 600 shots of ABS

40.05

40.03

29.77

29.75

19.80

19.80

109.96

109.92

Materials which can be used for molding: PP, ABS, PC, G-PET, PPS

80.03

79.99

150th shot

Average value

